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Supplementary Discussion 

Acute stress and chronic stress 

There are different methods to model stress responses in mice. Many are effective in modelling 

acute, short-term stress1-3. However, because mice can habituate to one single stressor after a 

few times, modelling chronic, long-lasting stress is much more challenging. Currently, the most 

robust method that has been widely validated and accepted to model chronic stress at 

behavioural, circuitry, and physiological levels is the model utilized in this study—chronic 

unpredictable stress model (also called chronic variable stress)4-9. By altering stressors each day 

in a randomized fashion, mice do not habituate to a single stressor, allowing this model to be 

applied long-term to study chronic stress. 

 

Systemic factors vs. niche factors of stem cell activity 

Proliferation of Drosophila germline stem cells is under direct control of insulin and the steroid 

hormone twenty-hydroxyecdysone (20E)10,11. In mammals, haematopoietic stem cell 

maintenance is influenced by oestrogen and liver-derived thrombopoietin12-14. These examples 

demonstrate how systemic hormones can act on stem cells directly to alter their behaviours. Here, 

we show a distinct example in which a systemic factor (corticosterone) acts on the niche (DP) to 

regulate HFSCs. 

DP is a key niche cell type that tunes the ability of HFSCs to transition from quiescence to 

activation15-19. We show here that Gas6 expression in DP is kept at a low level by circulating 

corticosterone, providing an example of an activating niche factor under suppression by a 

systemic regulator. The corticosterone-GAS6-AXL axis adds another layer of regulation on top of 

other known niche factors, extending or shortening telogen based on the overall physiological 

state of the organism (Extended Data Fig. 10g). Distinct from other local niche factors whose 

levels fluctuate at different telogen phases, corticosterone remains relatively constant and only 

becomes up-regulated under stress or as animals age. These increases in corticosterone 
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counteract local activating signals and lower Gas6 levels, leading to significantly extended telogen 

(Extended Data Fig. 10g). As corticosterone levels display a diurnal rhythm and are subject to 

seasonal changes20,21, it is also possible that the corticosterone-GAS6 axis helps fine tune activity 

of HFSCs based on circadian rhythm22-24 or contributes to regulating seasonal moulting in wild 

animals. 

Repeated entry into the hair cycle without exhaustion  

Quiescence has been postulated to preserve the ability of stem cells to regenerate tissues long-

term25-30. Here, we identified a pathway through which HFSCs can enter substantially more rounds 

of anagen throughout life without losing their regenerative potential. Our results also suggest that 

without corticosterone, the regenerative capacity of HFSCs does not decline substantially with 

age, as we found that old ADX animals regenerate hair follicles at a frequency faster than young 

control animals. Stem cell quiescence is known to prevent tumour initiation by HFSCs carrying 

active oncogenes or inactive tumour suppressors31. However, we did not observe apparent signs 

of hyperplasia in our ADX mice or Gas6 overexpression mice, suggesting that, in the absence of 

tumour-associated mutations, loss of HFSC quiescence due to modulations of the corticosterone-

GAS6-AXL axis does not automatically lead to aberrant overgrowth.  

In conclusion, our study showcases the remarkable potential of HFSCs when released 

from the systemic control of corticosterone. Our findings also open the door to future 

investigations into corticosterone-mediated regulation of stem cell quiescence in other organ 

systems, as well as potential therapeutic strategies to combat the detrimental impact of stress. 
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a Gating strategy for HFSCs and EpSCs
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b Gating strategy for DP
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Supplementary Figure 1. Gating strategies used for sorting and FACS analysis of HFSCs, EpSCs or DP cells. a, Gating strategies to sort 
hair follicle stem cells (HFSCs) (CD45-, CD49f+, CD34+, Sca-1-) and epidermal stem cells (EpSCs) (CD45-, CD49f+, CD34-, Sca-1+). The gating 
strategy was used in RNAseq analysis (Fig. 3f, Extended Data Fig. 6a-d), qRT-PCR analysis (Extended Data Fig. 4a, 6e,f, 7a-d, 8e, 9h,j) 
and FACS analysis (Extended Data Fig. 2c). b, Gating strategies to sort dermal papilla (DP) cells (CD45-, CD31-, Pdgfra+, CD24-, Sca-1-). 
The gating strategy was used in RNAseq analysis (Extended Data Fig. 7e,h-j) and qRT-PCR analysis (Fig. 3a, Extended Data Fig. 9b, 10b).
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